Total Pageviews

Sunday, 1 July 2018

Pembunuh bayi dalam kandungan



Pembunuh bayi dalam kandungan

Group B Streptococcus agalactiae




OVERVIEW: What every clinician needs to know

Pathogen name and classification

Streptococcus agalactiae or group B streptococcus (GBS)—a gram-positive, β-hemolytic organism in the Streptococcus genus that carries the Lancefield group B antigen. GBS are encapsulated organisms and ten antigenically distinct capsular serotypes have been described (1a, 1b, II–IX).

What is the best treatment?

What are the preferred anti-infective agent or agents and why?

·         GBS isolates are susceptible to penicillin, ampicillin, and other β-lactams, and penicillin/ampicillin remain the drugs of choice in non-penicillin allergic patients.

Are there issues of anti-infective resistance?

·         Recently, a small number of GBS isolates with reduced susceptibility to one or more β-lactam antibiotics have been described in the United States, Japan, and elsewhere. The prevalence of isolates with elevated minimum inhibitory concentrations (MICs) to penicillin or cephalosporins is currently extremely low, although recent increases have been documented, with the prevalence of penicillin resistance reported in Japan rising from 4.5% in 2007 to 6.6% in 2013. In the United States, incidence of reduced β-lactam susceptibility remains below 1% in surveys of both sterile and nonsterile site isolates, distributed among multiple capsular serotypes. The clinical relevance of GBS isolates with increased (but within the susceptible range) MICs is unclear.
·         The prevalence of erythromycin and clindamycin resistance in the United States is significant, ranging between 25 to 52% and 12 to 41%, respectively, in recent reports and resistance rates have been rising. Resistance to erythromycin and clindamycin has traditionally been associated with capsule serotype V, a serotype more commonly seen in GBS disease in nonpregnant adults, although increasing resistance among serotype IV isolates has recently been noted. The majority of GBS isolates are resistant to tetracycline. While fluoroquinolone resistance among isolates from invasive GBS disease in nonpregnant adults is low (1.2%) in the United States, fluoroquinolone resistant GBS (predominantly a highly clonal serotype 1b strain) accounted for approximately 24% of invasive isolates from a surveillance program in Japan and 33% in a study of invasive isolates in South Korea. The first two cases of GBS isolates with vancomycin resistance were reported in 2014, but vancomycin resistance remains extremely rare.

What are the mechanisms underlying resistance?

·         Resistance of GBS to erythromycin and clindamycin is mediated most commonly by two mechanisms:
o    antibiotic target-site modification by 23S rRNA methylases encoded by erm genes (ermB, ermA, ermTR), resulting in either constitutively expressed or erythromycin-induced resistance to macrolides, lincosamides, and streptogramins—the MLS phenotype
o    a macrolide efflux pump encoded by the mefA/E genes, that confers only macrolide resistance (clindamycin susceptible)—the M phenotype
·         The erm-mediated target modification is the most common mechanism of resistance in GBS and results in significantly higher erythromycin MICs. Two mutations, one in the parC gene (producing amino acid substitution Ser79Phe) and the other in gyrA (producing amino acid substitution Ser81Leu) together mediate fluoroquinolone resistance in GBS.
·         Similar to penicillin-resistant S. pneumoniae (the pneumococcus), GBS isolates with reduced susceptibility to β-lactams demonstrate changes in penicillin binding proteins (PBPs) that are responsible for catalyzing the final steps of bacterial cell wall peptidoglycan synthesis. Alterations in the transpeptidase domain of the catalytic center result in reduced affinity for β-lactam antibiotics. A number of amino acid substitutions, particularly V405A and Q557E in PBP 2B, have been linked with reduced susceptibility to β-lactams in GBS and mutations within PBPs 2B, 2X, and 1A have been demonstrated within at least three distinct genetic lineages. Several of the PBP amino acid changes mirror alterations identified in the pneumococcus that have been linked to penicillin and cefotaxime resistance. However, in contrast to the mosaic pattern of PBP alterations in S. pneumoniae acquired by recombination events with other streptococcal species, PBP changes in GBS appear to result from single base substitutions. Although reduced β-lactam susceptibility is currently rare, ongoing accumulation of mutations, particularly additional mutations in the catalytic site of PBP 1A as seen with S. pneumoniae, may eventually lead to high level β-lactam resistance in GBS.
·         The recent occurrence of vancomycin resistance in two epidemiologically unrelated GBS isolates was due to the acquisition of vanG resistance genes that are typically found in Enterococcus faecalis. The vanG gene cluster encodes enzymes that synthesize peptidoglycan precursors with low-affinity for vancomycin by replacing the high-affinity C-terminal D-Ala residue with low-affinity D-serine (D-Ser), thus removing the vancomycin-binding target. The origin and mode of acquisition of the vanG resistance genes in GBS has yet to be determined.

What are the best methods for detecting resistance?

·         Disk diffusion (including E-test strips), broth microdilution techniques, or automated commercial systems approved for β-hemolytic streptococcal species, can be used for susceptibility testing of GBS isolates. Routine testing for penicillin or ampicillin susceptibility is not currently recommended by the Clinical Laboratory Standards Institute (CLSI), since beta-lactam nonsusceptible isolates remain rare in GBS. Although routine β-lactam susceptibility testing is not recommended, consideration should be given to testing in settings of suspected meningitis and possibly endocarditis. Erythromycin and clindamycin susceptibility should be confirmed prior to use of these agents for treatment of documented GBS infection (or for intrapartum antibiotic prophylaxis). The double-disk diffusion “D-zone” method is recommended to detect inducible clindamycin resistance (iMLS) in isolates that demonstrate erythromycin resistance and clindamycin susceptibility by standard testing.

What alternative therapies are available?

·         Cephalosporins (cefazolin for non-meningitis and ceftriaxone or cefotaxime for meningitis) can be used in penicillin-allergic individuals who are not at high risk for anaphylaxis. Vancomycin can be used for those at high risk for anaphylaxis. Due to rising and significant rates of resistance to erythromycin and clindamycin, these drugs should only be used after susceptibility has been confirmed with appropriate antimicrobial susceptibility testing. Aminoglycosides demonstrate synergistic killing of GBS with penicillin in vitro and the addition of aminoglycosides to penicillin or a cephalosporin is recommended by some experts for the first 2 weeks of the 4 to 6 week antibiotic course for GBS endocarditis.

How do patients contract this infection, and how do I prevent spread to other patients?

Epidemiology

·         Nonpregnant adults: In the era of intrapartum antibiotic prophylaxis for prevention of GBS infections in newborn infants, more than 80% of invasive GBS disease now occurs in nonpregnant adolescents and adults. Although invasive GBS disease can occur in adults of all ages, the median age is 62 years and nearly half of all disease occurs in those aged 65 years and older. Rates increase with advancing age and remain significantly higher in blacks than in whites in the United States. In most cases, adults with invasive GBS disease have one or more underlying diseases and require hospitalization for a median of 7 days. Nursing home residents account for about one-tenth of nonpregnant adult cases. The case fatality rate has improved from a rate of almost 25% in 1990 to less than 10% in recent years in the United States; case-fatality rates are highest in the elderly. GBS bacteremia may be polymicrobial in a subset of patients, most often in association with Staphylococcal species. Approximately 5% of invasive GBS infections in adults represent a recurrent episode of disease. Blood cultures are the most common site of isolation of GBS in invasive disease (>80%), followed by bone and joint fluid cultures. Urine cultures are the most common site of isolation of GBS from noninvasive adult disease. Capsule serotypes Ia and V are the predominant serotypes associated with nonpregnant adult GBS disease in the United States, with serotypes III, II, and Ib also common globally in various orders of frequency depending on the geographic location. A small proportion of nonpregnant adult disease in North America is attributable to serotype IV, but this appears to be increasing. Serotype IV represented approximately 6% of isolates from non-pregnant adults in U.S. in surveillance from 2005-2006, while 16% of isolates from early-onset neonatal infections in Minnesota in 2010 were serotype IV. In surveillance conducted in two Canadian provinces from 2010-2014, ~17% of adult invasive disease was due to serotype IV.
·         Pregnant women: GBS disease in pregnant women is associated with upper genital tract disease that results in fetal death in approximately 50% of cases. The median age is 28 years and most disease occurs in otherwise healthy pregnant women. Maternal death is rare. Blood cultures are the source of the GBS isolate in just over half of pregnancy-associated cases and most other cultures are from products of conception. The capsular serotypes in pregnancy-associated GBS disease in the United States and many European countries are similar to those seen most commonly in early-onset neonatal disease and include 1a, II, III, and V. Global variation in serotype distribution in pregnancy-associated and neonatal disease has been reported, most notably from Japan, where serotypes VI and VIII account for a greater proportion of colonization and disease.
·         Are there seasonal differences in the incidence of infection? Seasonal variability of invasive GBS infections in nonpregnant adults, with a late summer peak, has been noted in a recent report from active, population-based surveillance in 10 US sites participating in the Active Bacterial Core Surveillance/Emerging Infections Program Network.
·         Are there environmental conditions that predispose to this infection? Vaginal/rectal colonization with GBS contributes to increase risk of peripartum infection in pregnant women and early-onset GBS disease in the newborn due to exposure during labor and delivery. Reasons for the late summer peak of invasive GBS infections in nonpregnant adults are unclear but some possibilities include environmental conditions favorable to skin and soft tissue infections, and less likely, increased exposure to bovine S. agalactiae strains in summer months. GBS has been linked to bovine mastitis and can be isolated from milk samples obtained in mastitis control programs. However, distinct subtypes, clonal groups and host specificities among human and bovine strains of GBS suggest a very low likelihood for cross species transmission.
·         Are some individuals asymptomatic carriers of the organism? Asymptomatic colonization with GBS may occur in the gastrointestinal tract, the perineal area, vagina, cervix or urethra, and occasionally the skin and throat. Co-colonization with identical GBS isolates may occur in sexual partners. Male and female college students living in dormitories were frequently colonized (20-34%) with GBS; the anal orifice was the most common site followed by the vagina, urine, and throat. Up to a quarter of all pregnant women will have vaginal and/or rectal colonization with GBS, and when present late in pregnancy, colonization represents the most important risk factor for early-onset GBS disease in the newborn. Similarly, vaginal colonization near the time of delivery, particularly heavy colonization, is a risk factor for intra-amniotic infection and postpartum endometritis in pregnant women. GBS bacteriuria, present in a small but significant number (2-10%) of pregnant women, is a marker for heavy vaginal colonization, and has been identified as a risk factor for both early and late-onset disease in infants. In a study of 254 healthy adults ≥65 years of age, 22% had GBS colonization in the rectum, vagina, or urine and nearly half of the isolates were capsule serotype V, an important cause of invasive disease in the elderly.
·         Are there host factors that contribute to the risk of infection? Disruption of the integrity of skin and/or mucous membranes, and compromised blood flow or lymphatic drainage may predispose to GBS infection in nonpregnant adults. Examples include chronic foot ulcers in diabetes, pressure-related skin breakdown, postsurgical lymphatic disruption, and radiation damage. Unrecognized deep seated infections (e.g., osteomyelitis, endocarditis) may result in recurrent episodes of invasive GBS disease.
·         How prevalent is this infection and in what regions of the world is it most prevalent? GBS is well-established as an important pathogen in pregnancy-associated and neonatal disease from most regions of the world. It remains the most common cause of neonatal sepsis in the United States. Recognition of the significant burden of serious GBS infections among nonpregnant adults has increased in recent years as documented in reports from the United States, Canada, Spain, Sweden, Norway, Taiwan, Japan, South Korea, and elsewhere.
·         Is the incidence increasing, decreasing, or staying the same? Why? Substantial recent declines in early-onset neonatal disease in the United States have been attributed to implementation of guidelines for universal GBS screening of pregnant women at 35 to 37 weeks gestation and use of intrapartum antibiotic prophylaxis (IAP) as discussed in detail elsewhere. The use of IAP has also been associated with a significant decline in the rate of peripartum GBS infection in pregnant women, decreasing from 0.29 maternal invasive GBS cases per 1,000 live births in 1993 to a mean rate of 0.12 cases per 1,000 live births between 1999 and 2005 in the United States. In contrast, rates of invasive GBS disease in nonpregnant adults have been steadily increasing in recent years. Incidence rates more than doubled from 3.6 cases per 100,000 population during 1990 to 7.3 cases per 100,000 population in 2007, and then increased further to 8.7 cases per 100,000 population in 2014. The largest increases in incidence have been noted in those between 65 to 79 years of age. The proportion of adults with invasive GBS infection who have diabetes mellitus rose from 36% to 53% between 1998 and 2014. Although the reasons for increased rates of adult GBS disease are not fully understood, the increasing prevalence of predisposing conditions such as diabetes may be contributing.

Infection control issues

·         Should I use gloves, gowns, masks etc.? Isolation of nonpregnant adults with GBS infection is not recommended and person-to-person transmission of adult GBS disease in a healthcare setting is not well documented. However, transmission of the organism related to intimate contact is suggested by carriage studies of sexual partners. Nosocomial GBS disease may occur in nonpregnant adults and has been independently associated with the placement of a central venous catheter. Two cases of presumed catheter-associated GBS bacteremia that developed within several hours of each other were reported from a hemodialysis center and the subsequent investigation suggested that transmission may have occurred through the hands of healthcare personnel. While the origin of nosocomial transmission of GBS is not well established, the contribution of pre-existing skin or mucosal colonization is a plausible source. Good hand hygiene and adherence to universal precautions are essential.
·         Is vaccination recommended? Despite great interest in the development of a vaccine to prevent neonatal and serious non-pregnancy related GBS infections, no vaccine is currently available. Initial vaccine development efforts were focused on capsular polysaccharide (CPS) as the vaccine target and later on CPS-protein conjugate vaccines using tetanus toxoid or CRM197, a genetically detoxified form of diphtheria toxin, as carrier proteins to enhance immunogenicity. Prototypic monovalent conjugate vaccines with nine GBS capsule serotypes have been prepared and tested pre-clinically and some in Phase 1 and 2 human trials. Bivalent CPS-conjugate vaccines (e.g., CPS II and III) have been shown to be safe and immunogenic in human studies, but the lack of cross protection among capsular serotypes and variability of serotype distribution globally limits the broad application of a bivalent vaccine. More recently, a trivalent conjugate vaccine designed to protect against serotypes Ia, Ib, and III has been developed and tested in Phase 1/Phase 2 clinical trials, targeting pregnant women and women of childbearing age. In results published to date, GBS antibody responses to vaccine serotypes among vaccine recipients were statistically-significant, and antibody transfer to infants was documented, although more data are needed to determine the persistence of antibodies during the newborn period. Antibody responses in HIV-positive women were less robust than in HIV-negative women in a trial in Malawi and South Africa, however, which will merit further study. Reassuringly, none of these trials identified significant safety concerns. Early work is underway to develop vaccines that target conserved GBS surface proteins (Rib, alpha C, pilus proteins) that may elicit an effective immune response, with the potential of providing broad protection across capsular serotypes. Although the highest priority for GBS vaccine development is prevention of neonatal disease, targeting adult populations at high risk for GBS disease (e.g., adults with diabetes) may be an area of future investigation.
·         Is anti-infective prophylaxis recommended? Guidelines for the prevention of perinatal GBS disease have been developed and include recommendations for universal screening at 35 to 37 weeks gestation for maternal colonization and use of intrapartum antibiotic prophylaxis in all who test positive for GBS colonization. Antibiotic prophylaxis is not recommended for nonpregnant individuals colonized with GBS.

What host factors protect against this infection?

·         What key immune system factors protect against invasion by this pathogen? Once GBS organisms successfully penetrate skin or mucosal barriers to reach deep tissues or the bloodstream, neutrophils and macrophages become critical to clearance of the pathogen. Effective opsonophagocytic function is dependent upon adequate levels of type-specific antibodies and complement. GBS possess a number of mechanisms to subvert the immune response as shown in Table I below.
·         Which patients are at higher risk for contracting this infection? The majority of invasive GBS disease in nonpregnant adults occurs in individuals with significant underlying diseases including, most importantly, diabetes mellitus. Among patients with invasive GBS disease, those with diabetes were more likely to have skin, soft tissue, and bone infections compared with those without diabetes. Obesity also appears to have an association with both GBS colonization and GBS disease. A 2004-2008 retrospective analysis of pregnant women at an academic medical center found that those who were obese had a higher incidence of either vaginal or rectal GBS colonization when compared to those who were not. U.S. GBS surveillance in 2005 found that almost 88% of adults with invasive disease had at least one medical comorbidity, and obesity was commonly present. Additional pre-existing conditions associated with increased risk of serious GBS disease include: cirrhosis, history of stroke, breast cancer, decubitus ulcer, and neurogenic bladder. Nursing home residents are at significantly greater risk of invasive GBS infection than community-dwelling individuals of similar age.
·         Describe how the host defense responses to this pathogen explain the pathological changes. Release of tumor necrosis factor-α, interleukin (IL)-1, and IL-6 is elicited by peptidoglycan, and to a lesser extent by lipoteichoic acid and other bacterial cell wall components. The GBS β-hemolysin/cytolysin and cell wall components combine to stimulate inducible nitric oxide synthase in mouse macrophages. Cyclooxygenase COX2 is activated through the mitogen-activated protein kinase pathway. The combined activation of proinflammatory pathways triggered by GBS infection lead to pathologic changes typical of the sepsis syndrome, including the potential for end-organ damage.

What are the clinical manifestations of infection with this organism?

What are the most common diseases associated with this pathogen?

·         Nonpregnant adults: One of the most common clinical presentations in nonpregnant adults with invasive GBS disease is bacteremia without an identified source of infection. Among those with a documented source, skin and soft tissue infections are the most important clinical syndromes associated with invasive GBS infections in adults, including cellulitis, infected decubitus ulcers, and diabetic foot ulcers. In 2007, skin and soft tissue infections accounted for ~25% of cases of invasive infection in the United States, pneumonia accounted for approximately 12% of cases, followed by osteomyelitis (9.4%) and septic arthritis (7.8%). More than half of the episodes of GBS septic arthritis are prosthetic joint infections. Osteomyelitis may result from contiguous spread from skin and soft tissue infections (e.g., diabetic foot infections) or by hematogenous spread, as is often the case with vertebral osteomyelitis. Pneumonia is more often seen in the elderly, particularly in residents of long-term care facilities. Peritonitis is uncommon and usually related to gastrointestinal pathology or, rarely, with peritoneal dialysis. Endocarditis (2-9%) and meningitis (1.6%) are uncommon but very serious clinical syndromes associated with high morbidity and mortality (discussed in detail below). Although more commonly associated with group A streptococcal infections, GBS has occasionally been associated with streptococcal toxic shock syndrome and necrotizing fasciitis. Among nonpregnant adults with invasive GBS disease, patients with diabetes are more likely to present with skin and soft tissue infections, osteomyelitis, and necrotizing fasciitis. GBS has been associated with intraabdominal and pelvic abscesses, including several in which an initial infection source was not identified, predominantly in diabetic patients. Infections associated with intravenous and arterial catheters and devices including pacemaker wires and vascular graft material have been reported. Urinary tract infections are the most common noninvasive form of GBS infection in adults, although skin and soft tissue infections without associated invasive disease (including cellulitis, erysipelas, and wound infections) and upper respiratory infections contribute to the noninvasive disease burden.
·         Pregnancy-associated disease: Pregnancy-associated GBS disease now represents less than 5% of all invasive GBS disease in adults in the United States. Chorioamnionitis, postpartum endometritis, and bacteremia are the most common manifestations of invasive GBS in pregnancy. Upper genital tract infection resulting in fetal death may occur in up to 50% of cases. Postpartum endometritis often follows caesarean delivery. Just as in nonpregnant adults, endocarditis and meningitis are rare but serious complications of pregnancy-associated GBS disease. A small number of endocarditis cases have been reported following elective abortions. Wound infections, cellulitis, fasciitis, pneumonia, infections of ventriculoperitoneal shunts, bone and joint infections, and deep abscess formation (including epidural abscess) may occur. Urinary tract infections are the most common manifestation of noninvasive, pregnancy-associated disease.

Additional details on clinical presentations

·         GBS endocarditis: Adult GBS endocarditis in the pre-antibiotic era was an almost exclusively pregnancy-associated disease in relatively young women, some of whom had pre-existing valvular heart disease. In more recent reviews, GBS endocarditis is a disease primarily of older adults with a number of underlying conditions, including diabetes, cirrhosis, urinary tract disease, malignancy, renal transplant, known valvular heart disease, and only rarely, pregnancy. The mean or median age of adults with GBS endocarditis is now over 55 years and men and women are more equally represented. GBS accounted for approximately 1.7-3% of adult infective endocarditis (IE) cases overall and 3% of all left-sided IE cases in Spain. Disease onset is most often acute and primarily effects left sided, native valves. Large vegetations (>1cm) are common, as are embolic events and intracardiac complications such as valve rupture and abscess formation. Although reported mortality has been as high as 34 to 56% in the antibiotic era, more recent estimates of case-fatality have improved and range between 10 to 13%.
·         GBS meningitis: In one case series, GBS was the reported etiology in 4-5% of acute bacterial meningitis episodes occurring in individuals over the age of 15 years. The mean age of adults presenting with GBS meningitis is 49 years (range 17-89) and 25% are older than 65 years of age. Gram stains of cerebrospinal fluid often (84%) demonstrate gram-positive cocci, and blood cultures may be positive in nearly 80% of cases. Most adults with GBS meningitis have significant underlying conditions, including diabetes (19%), autoimmune and/or immunocompromising conditions (17%), pregnancy (14%), cirrhosis (12.5%), and a communicating subarachnoid lesion in 11%. Recent endometritis was present in the majority of pregnancy-associated cases; endocarditis and concurrent upper or lower respiratory tract infection were the most common distant foci of infection in nonpregnant adults. Approximately one-third of adult GBS meningitis cases have a fatal outcome, and survivors may be left with permanent neurologic sequelae, such as deafness. Several cases of GBS meningitis have occurred in patients with indwelling ventriculoperitoneal shunts.
·         Prosthetic joint infections: The incidence of GBS infections after primary joint replacement has been estimated at 1 per 667 arthroplasties. Prosthetic hip infections appear to be slightly more common than knee infections based upon clinical reports. The average or median age at presentation ranges between 55 and 74 years and as many as 47% of patients have diabetes mellitus. GBS infections account for 6 to 12% of prosthetic joint infections overall, and serotypes Ia, III, and V are the most common serotypes associated with infection. There has been a report of a prosthetic knee infection occurring in a 65 year old man one week after undergoing a flexible sigmoidoscopy procedure without biopsy.

What common complications are associated with infection with this pathogen?

·         Sustained bacteremia may allow seeding of heart valves, joints, or meninges leading to endocarditis, septic arthritis, and meningitis. Endocarditis can be complicated by endophthalmitis, purulent pericarditis, myocardial abscess, and mycotic aneurysms. Local extension of bone and joint infections may result in deep tissue abscess formation including epidural abscesses complicating vertebral osteomyelitis.

How should I identify the organism?

·         What tissue samples will provide the highest diagnostic yield? Cultures should be obtained from appropriate body sites (e.g., blood, cerebrospinal fluid, urine, synovial fluid, sputum, etc.) depending on the clinical presentation. Swabs of the lower vagina and rectum should be obtained to screen for GBS colonization in pregnant women at 35 to 37 weeks gestation (as described in detail elsewhere).
·         What are the best staining techniques? What is the morphology by microscopy? Group B streptococci are gram-positive cocci that form pairs and short chains.
·         How should you culture the organism? What is the preferred media or tissue culture?Direct plating of specimens onto 5% sheep blood agar or use of standardized, commercial culture systems approved for isolation of streptococcal species can be used to isolate GBS from most infected body sites. Isolation of GBS from mucosal surfaces may, however, represent colonization. In order to maximize the yield in screening pregnant women for GBS colonization at vaginal/rectal sites that have mixed flora, incubation for 18 to 24 hours in antibiotic-containing selective broth media prior to definitive identification procedures is recommended. Todd-Hewitt broth supplemented with either a combination of gentamicin and nalidixic acid or colistin and nalidixic acid, with or without 5% sheep blood have been used. Commercially available chromogenic agar and broth media are available for detection of β-hemolytic GBS.
·         What is the expected colony morphology or cytopathic effect? GBS colonies are gray-white on blood agar plates and demonstrate narrow zones of β-hemolysis. A small (approximately 4%) proportion of GBS isolates are nonhemolytic. Therefore, typical whitish-gray colonies on blood agar plates that fail to demonstrate hemolysis should be further tested to exclude GBS
·         What biochemical and other assays are used for specific identification? The best way to definitively identify GBS is serologic determination of the presence of the Lancefield group B antigen on the surface of the bacteria. Latex slide agglutination using group B specific antisera is a commonly used technique. Hydrolysis of hippurate and a positive CAMP test are additional characteristics that serve to distinguish GBS from other Streptococci.
·         How fast does the organism grow? Growth of S. agalactiae can generally be detected within 24 to 48 hours using standard culture techniques.
·         How sensitive are the culture techniques? Standard culture techniques are sufficient for identification of GBS infection, particularly when the organism is present in pure or predominant culture. However, direct plating of vaginal/rectal swabs to screen for GBS colonization in pregnant women may fail to detect up to 50% of carriers, prompting the strong recommendation for incubation of screening specimens in selective enrichment broth for 18 to 24 hours prior to routine identification procedures.
·         Is a polymerase chain reaction (PCR) assay helpful? Is it commercially available? What is the sensitivity and specificity? Deoxyribonucleic acid probes and nucleic acid amplification tests such as PCR have been studied in the context of providing a more rapid and/or accurate assessment of GBS colonization in pregnancy and are discussed elsewhere. Current applications for use in the diagnosis of nonpregnancy related GBS disease are limited.

How does this organism cause disease?

What key virulence factors allow the pathogen to colonize, spread from person to person, invade tissue and cause tissue destruction?

Proposed GBS virulence mechanisms at key steps in disease pathogenesis are shown in Table I.

How do these virulence factors explain the clinical manifestations?

GBS possess an array of virulence factors that allow them to successfully invade mucosal/epithelial barriers, particularly in settings of impaired integrity of the skin or mucous membranes. Organisms can then penetrate and spread into subcutaneous tissue, fascia, bone, and joints leading to skin and soft tissue infections, fasciitis, osteomyelitis, and septic arthritis. The β-hemolysin/cytolysin is associated with lung epithelial cell injury and contributes to spread within the lungs in GBS pneumonia. Once in the bloodstream, the presence of the antiphagocytic, sialic-acid containing polysaccharide capsule and other complement-inhibitory factors allow S. agalactiae to survive in the bloodstream. Release of cell-wall components triggers a strong proinflammatory response that may produce a sepsis syndrome. Effective intravascular survival coupled with the capacity to cross the blood brain barrier, facilitates GBS infection of the subarachnoid space and the development of clinical meningitis.







.

No comments:

Post a Comment

Note: only a member of this blog may post a comment.